经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » MATLAB » 查看文章
【matplotlib 实战】--热力图
来源:cnblogs  作者:wang_yb  时间:2023/10/25 10:12:44  对本文有异议

热力图,是一种通过对色块着色来显示数据的统计图表。
它通过使用颜色编码来表示数据的值,并在二维平面上呈现出来。
热力图通常用于显示大量数据点的密度、热点区域和趋势。

绘图时,一般较大的值由较深的颜色表示,较小的值由较浅的颜色表示;较大的值由偏暖的颜色表示,较小的值由较冷的颜色表示,等等。

热力图适合用于查看总体的情况、发现异常值、显示多个变量之间的差异,以及检测它们之间是否存在任何相关性。

1. 主要元素

热力图的主要元素如下:

  1. 矩形块:每个矩形块都有一个对应的位置。表示某种属性、频率、密度等。
  2. 颜色映射:通常使用渐变色带来表示数值的大小或密度。常见的颜色映射包括从冷色调(如蓝色)到热色调(如红色)的渐变,表示数值从低到高的变化。
  3. 热力密度:通过颜色的深浅来表示数据的密度或频率。较浅的颜色表示较低的密度或频率,而较深的颜色表示较高的密度或频率。
  4. 坐标轴:热力图通常在二维平面上显示,因此会有两个坐标轴,分别表示水平和垂直方向上的位置。

2. 适用的场景

热力图适用于以下分析场景:

  • 数据密度分析:显示数据点的密度分布情况。它可以帮助用户观察数据的聚集区域和稀疏区域,从而揭示数据的分布模式和趋势。
  • 热点区域识别:识别数据中的热点区域,即数据密度较高的区域。对于发现热门地区、热门产品或热门事件等具有重要意义。
  • 趋势分析:通过观察颜色的变化,可以分析数据在不同区域或时间段的变化趋势。
  • 空间数据分析:在地理信息系统(GIS)和位置数据分析中,可以显示地理空间上的数据分布和密度,帮助用户理解地理区域的特征和差异。
  • 网站流量分析:显示用户在网页上的点击热度和浏览热度。这有助于优化网站布局、改进用户体验和提高转化率。

3. 不适用的场景

热力图在以下分析场景中可能不适用:

  • 无序数据:对于无序的数据,热力图可能无法提供有意义的分析结果。
  • 数据缺失:如果数据中存在大量缺失值或空白区域,可能无法准确地反映数据的密度和分布情况。
  • 多个并行路径:通常用于展示单一维度的数据分布情况。如果需要同时比较多个维度或路径的数据,热力图可能不是最合适的选择。

4. 分析实战

本次分析今年上半年南京主要的几个区二手房的成交数量情况。

4.1. 数据来源

数据来自链家网南京地区的二手房成交的页面。
整理好的数据可以从下面的地址下载:
https://databook.top/lianjia/nj

各个区的二手房交易数据已经整理成csv格式。

  1. import os
  2. df_dict = {}
  3. #数据解压的地址
  4. fp = "d:/share/data/南京二手房交易"
  5. for f in os.listdir(fp):
  6. df = pd.read_csv(os.path.join(fp, f))
  7. df_dict[f] = df
  8. df_dict #合并所有区的数据

4.2. 数据清理

清理数据的主要几个步骤:

  1. dealDate列转换为 日期(datetime)格式
  2. 按周统计的交易数量
  3. 统计结果保存到新的字典中(df_stat),取日期最近的10条
  1. df_stat = {}
  2. for k, df in df_dict.items():
  3. df["dealDate"] = pd.to_datetime(df["dealDate"])
  4. # 最近10周的交易量
  5. week_sum = df.resample("W", on="dealDate").name.count()
  6. week_sum = week_sum.sort_index(ascending=False)
  7. df_stat[k.replace(".csv", "")] = week_sum.head(10)
  8. df_stat

4.3. 分析结果可视化

更加各个区的成交数量绘制最近10周的交易热力图。

  1. x_labels = []
  2. y_labels = df_stat.keys() # Y周的标签
  3. data = []
  4. for _, v in df_stat.items():
  5. if len(x_labels) == 0: # X轴的日期标签
  6. x_labels = v.index.strftime("%Y-%m-%d").tolist()
  7. x_labels.reverse()
  8. v = v.sort_index()
  9. data.append(v.tolist())
  10. plt.xticks(ticks=np.arange(len(x_labels)),
  11. labels=x_labels,
  12. rotation=45)
  13. plt.yticks(ticks=np.arange(len(y_labels)),
  14. labels=y_labels)
  15. plt.imshow(data, cmap=plt.cm.hot_r)
  16. plt.colorbar()
  17. plt.show()

image.png

从热力图中可以看出,江宁区浦口区的成交数量明显多于其他区,尤其是江宁区
其次是鼓楼区秦淮区稍好一些(可能和这2个区学区房比较多有关),而溧水区六合区明显交易量不行。

原文链接:https://www.cnblogs.com/wang_yb/p/17786291.html

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号