前面讲解了使用纯numpy实现数值微分和误差反向传播法的手写数字识别,这两种网络都是使用全连接层的结构。全连接层存在什么问题呢?那就是数据的形状被“忽视”了。比如,输入数据是图像时,图像通常是高、长、通道方向上的3维形状。但是,向全连接层输入时,需要将3维数据拉平为1维数据。实际上,前面提到的使用了MNIST数据集的例子中,输入图像就是1通道、高28像素、长28像素的(1, 28, 28)形状,但却被排成1列,以784个数据的形式输入到最开始的Affine层。
图像是3维形状,这个形状中应该含有重要的空间信息。比如空间上邻近的像素为相似的值、RBG的各个通道之间分别有密切的关联性、相距较远的像素之间没有什么关联等,3维形状中可能隐藏有值得提取的本质模式。但是,因为全连接层会忽视形状,将全部的输入数据作为相同的神经元(同一维度的神经元)处理,所以无法利用与形状相关的信息。而卷积层可以保持形状不变。当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。
- import numpy as np
- from collections import OrderedDict
- import matplotlib.pylab as plt
- from dataset.mnist import load_mnist
- import pickle
-
- def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
- """
-
- Parameters
- ----------
- input_data : 由(数据量, 通道, 高, 长)的4维数组构成的输入数据
- filter_h : 滤波器的高
- filter_w : 滤波器的长
- stride : 步幅
- pad : 填充
-
- Returns
- -------
- col : 2维数组
- """
- N, C, H, W = input_data.shape
- out_h = (H + 2*pad - filter_h)//stride + 1
- out_w = (W + 2*pad - filter_w)//stride + 1
-
- img = np.pad(input_data, [(0,0), (0,0), (pad, pad), (pad, pad)], 'constant')
- col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))
-
- for y in range(filter_h):
- y_max = y + stride*out_h
- for x in range(filter_w):
- x_max = x + stride*out_w
- col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]
-
- col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N*out_h*out_w, -1)
- return col
-
-
- def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
- """
-
- Parameters
- ----------
- col :
- input_shape : 输入数据的形状(例:(10, 1, 28, 28))
- filter_h :
- filter_w
- stride
- pad
-
- Returns
- -------
-
- """
- N, C, H, W = input_shape
- out_h = (H + 2*pad - filter_h)//stride + 1
- out_w = (W + 2*pad - filter_w)//stride + 1
- col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)
-
- img = np.zeros((N, C, H + 2*pad + stride - 1, W + 2*pad + stride - 1))
- for y in range(filter_h):
- y_max = y + stride*out_h
- for x in range(filter_w):
- x_max = x + stride*out_w
- img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]
-
- return img[:, :, pad:H + pad, pad:W + pad]
-
- class Relu:
- def __init__(self):
- self.mask = None
-
- def forward(self, x):
- self.mask = (x <= 0)
- out = x.copy()
- out[self.mask] = 0
-
- return out
-
- def backward(self, dout):
- dout[self.mask] = 0
- dx = dout
-
- return dx
-
- def softmax(x):
- if x.ndim == 2:
- x = x.T
- x = x - np.max(x, axis=0)
- y = np.exp(x) / np.sum(np.exp(x), axis=0)
- return y.T
-
- x = x - np.max(x) # 溢出对策
- return np.exp(x) / np.sum(np.exp(x))
-
- def cross_entropy_error(y, t):
- if y.ndim == 1:
- t = t.reshape(1, t.size)
- y = y.reshape(1, y.size)
-
- # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
- if t.size == y.size:
- t = t.argmax(axis=1)
-
- batch_size = y.shape[0]
- return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size
-
- class SoftmaxWithLoss:
- def __init__(self):
- self.loss = None
- self.y = None # softmax的输出
- self.t = None # 监督数据
-
- def forward(self, x, t):
- self.t = t
- self.y = softmax(x)
- self.loss = cross_entropy_error(self.y, self.t)
-
- return self.loss
-
- def backward(self, dout=1):
- batch_size = self.t.shape[0]
- if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况
- dx = (self.y - self.t) / batch_size
- else:
- dx = self.y.copy()
- dx[np.arange(batch_size), self.t] -= 1
- dx = dx / batch_size
-
- return dx
-
- #Affine层的实现
- class Affine:
- def __init__(self,W,b):
- self.W=W
- self.b=b
- self.x=None
- self.dW=None
- self.db=None
- self.original_x_shape = None
- def forward(self,x):
- #对于卷积层 需要把数据先展平
- self.original_x_shape = x.shape
- x=x.reshape(x.shape[0],-1)
- self.x=x
- out=np.dot(x,self.W)+self.b
- return out
- def backward(self,dout):
- dx=np.dot(dout,self.W.T)
- self.dW=np.dot(self.x.T,dout)
- self.db=np.sum(dout,axis=0)
-
- # 还原输入数据的形状(对应张量)
- dx = dx.reshape(*self.original_x_shape)
- return dx
-
- #卷积层的实现
- class Convolution:
- def __init__(self,W,b,stride=1,pad=0):
- self.W=W
- self.b=b
- self.stride=stride
- self.pad=pad
-
- # 中间数据(backward时使用)
- self.x = None
- self.col = None
- self.col_W = None
-
- # 权重和偏置参数的梯度
- self.dW = None
- self.db = None
-
- def forward(self,x):
- #滤波器的数目、通道数、高、宽
- FN,C,FH,FW=self.W.shape
- #输入数据的数目、通道数、高、宽
- N,C,H,W=x.shape
-
- #输出特征图的高、宽
- out_h=int(1+(H+2*self.pad-FH)/self.stride)
- out_w=int(1+(W+2*self.pad-FW)/self.stride)
-
- #输入数据使用im2col展开
- col=im2col(x,FH,FW,self.stride,self.pad)
- #滤波器的展开
- col_W=self.W.reshape(FN,-1).T
- #计算
- out=np.dot(col,col_W)+self.b
- #变换输出数据的形状
- #(N,h,w,C)->(N,c,h,w)
- out=out.reshape(N,out_h,out_w,-1).transpose(0,3,1,2)
-
- self.x = x
- self.col = col
- self.col_W = col_W
-
- return out
-
- def backward(self, dout):
- FN, C, FH, FW = self.W.shape
- dout = dout.transpose(0,2,3,1).reshape(-1, FN)
-
- self.db = np.sum(dout, axis=0)
- self.dW = np.dot(self.col.T, dout)
- self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)
-
- dcol = np.dot(dout, self.col_W.T)
- dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)
-
- return dx
-
- #池化层的实现
- class Pooling:
- def __init__(self,pool_h,pool_w,stride=1,pad=0):
- self.pool_h=pool_h
- self.pool_w=pool_w
- self.stride=stride
- self.pad=pad
-
- self.x = None
- self.arg_max = None
- def forward(self,x):
- #输入数据的数目、通道数、高、宽
- N,C,H,W=x.shape
- #输出数据的高、宽
- out_h=int(1+(H-self.pool_h)/self.stride)
- out_w=int(1+(W-self.pool_w)/self.stride)
-
- #展开
- col=im2col(x,self.pool_h,self.pool_w,self.stride,self.pad)
- col=col.reshape(-1,self.pool_h*self.pool_w)
-
- #最大值
- arg_max = np.argmax(col, axis=1)
- out=np.max(col,axis=1)
-
- #转换
- out=out.reshape(N,out_h,out_w,C).transpose(0,3,1,2)
-
- self.x = x
- self.arg_max = arg_max
-
- return out
-
- def backward(self, dout):
- dout = dout.transpose(0, 2, 3, 1)
-
- pool_size = self.pool_h * self.pool_w
- dmax = np.zeros((dout.size, pool_size))
- dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
- dmax = dmax.reshape(dout.shape + (pool_size,))
-
- dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
- dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)
-
- return dx
-
- #SimpleNet
- class SimpleConvNet:
- def __init__(self,input_dim=(1,28,28),
- conv_param={'filter_num':30,'filter_size':5,'pad':0,'stride':1},
- hidden_size=100,
- output_size=10,
- weight_init_std=0.01):
- filter_num=conv_param['filter_num']#30
- filter_size=conv_param['filter_size']#5
- filter_pad=conv_param['pad']#0
- filter_stride=conv_param['stride']#1
-
- input_size=input_dim[1]#28
- conv_output_size=int((1+input_size+2*filter_pad-filter_size)/filter_stride)#24
- #pool 默认的是2x2最大值池化 池化层的大小变为卷积层的一半30*12*12=4320
- pool_output_size=int(filter_num*(conv_output_size/2)*(conv_output_size/2))
-
- #权重参数的初始化部分 滤波器和偏置
- self.params={}
- #(30,1,5,5)
- self.params['W1']=np.random.randn(filter_num,input_dim[0],filter_size,filter_size)*weight_init_std
- #(30,)
- self.params['b1']=np.zeros(filter_num)
-
- #(4320,100)
- self.params['W2']=np.random.randn(pool_output_size,hidden_size)*weight_init_std
- #(100,)
- self.params['b2']=np.zeros(hidden_size)
- #(100,10)
- self.params['W3']=np.random.randn(hidden_size,output_size)*weight_init_std
- #(10,)
- self.params['b3']=np.zeros(output_size)
-
- #生成必要的层
- self.layers=OrderedDict()
- #(N,1,28,28)->(N,30,24,24)
- self.layers['Conv1']=Convolution(self.params['W1'],self.params['b1'],conv_param['stride'],conv_param['pad'])
- #(N,30,24,24)
- self.layers['Relu1']=Relu()
- #池化层的步幅大小和池化应用区域大小相等
- #(N,30,12,12)
- self.layers['Pool1']=Pooling(pool_h=2,pool_w=2,stride=2)
- #全连接层
- #全连接层内部有个判断 首先是把数据展平
- #(N,30,12,12)->(N,4320)->(N,100)
- self.layers['Affine1']=Affine(self.params['W2'],self.params['b2'])
- #(N,100)
- self.layers['Relu2']=Relu()
- #(N,100)->(N,10)
- self.layers['Affine2']=Affine(self.params['W3'],self.params['b3'])
- self.last_layer=SoftmaxWithLoss()
-
- def predict(self,x):
- for layer in self.layers.values():
- x=layer.forward(x)
- return x
-
- def loss(self,x,t):
- y=self.predict(x)
- return self.last_layer.forward(y,t)
-
- def gradient(self,x,t):
- #forward
- self.loss(x,t)
-
- #backward
- dout=1
- dout=self.last_layer.backward(dout)
- layers=list(self.layers.values())
- layers.reverse()
- for layer in layers:
- dout=layer.backward(dout)
-
- #梯度
- grads={}
- grads['W1']=self.layers['Conv1'].dW
- grads['b1']=self.layers['Conv1'].db
- grads['W2']=self.layers['Affine1'].dW
- grads['b2']=self.layers['Affine1'].db
- grads['W3']=self.layers['Affine2'].dW
- grads['b3']=self.layers['Affine2'].db
-
- return grads
-
- #计算准确率
- def accuracy(self,x,t):
- y=self.predict(x)
- y=np.argmax(y,axis=1)
- if t.ndim !=1:
- t=np.argmax(t,axis=1)
- accuracy=np.sum(y==t)/float(x.shape[0])
- return accuracy
-
- #保存模型参数
- def save_params(self, file_name="params.pkl"):
- params = {}
- for key, val in self.params.items():
- params[key] = val
- with open(file_name, 'wb') as f:
- pickle.dump(params, f)
- #载入模型参数
- def load_params(self, file_name="params.pkl"):
- with open(file_name, 'rb') as f:
- params = pickle.load(f)
- for key, val in params.items():
- self.params[key] = val
-
- for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
- self.layers[key].W = self.params['W' + str(i+1)]
- self.layers[key].b = self.params['b' + str(i+1)]
-
-
- if __name__=='__main__':
- (x_train,t_train),(x_test,t_test)=load_mnist(flatten=False)
- # 处理花费时间较长的情况下减少数据
- x_train, t_train = x_train[:5000], t_train[:5000]
- x_test, t_test = x_test[:1000], t_test[:1000]
- net=SimpleConvNet(input_dim=(1,28,28),
- conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
- hidden_size=100, output_size=10, weight_init_std=0.01)
-
- train_loss_list=[]
-
- #超参数
- iter_nums=1000
- train_size=x_train.shape[0]
- batch_size=100
- learning_rate=0.1
-
- #记录准确率
- train_acc_list=[]
- test_acc_list=[]
- #平均每个epoch的重复次数
- iter_per_epoch=max(train_size/batch_size,1)
-
- for i in range(iter_nums):
- #小批量数据
- batch_mask=np.random.choice(train_size,batch_size)
- x_batch=x_train[batch_mask]
- t_batch=t_train[batch_mask]
-
- #计算梯度
- #误差反向传播法 计算很快
- grad=net.gradient(x_batch,t_batch)
-
- #更新参数 权重W和偏重b
- for key in ['W1','b1','W2','b2']:
- net.params[key]-=learning_rate*grad[key]
-
- #记录学习过程
- loss=net.loss(x_batch,t_batch)
- print('训练次数:'+str(i)+' loss:'+str(loss))
- train_loss_list.append(loss)
-
- #计算每个epoch的识别精度
- if i%iter_per_epoch==0:
- #测试在所有训练数据和测试数据上的准确率
- train_acc=net.accuracy(x_train,t_train)
- test_acc=net.accuracy(x_test,t_test)
- train_acc_list.append(train_acc)
- test_acc_list.append(test_acc)
- print('train acc:'+str(train_acc)+' test acc:'+str(test_acc))
-
- # 保存参数
- net.save_params("params.pkl")
- print("模型参数保存成功!")
-
- print(train_acc_list)
- print(test_acc_list)
-
- # 绘制图形
- markers = {'train': 'o', 'test': 's'}
- x = np.arange(len(train_acc_list))
- plt.plot(x, train_acc_list, label='train acc')
- plt.plot(x, test_acc_list, label='test acc', linestyle='--')
- plt.xlabel("epochs")
- plt.ylabel("accuracy")
- plt.ylim(0, 1.0)
- plt.legend(loc='lower right')
- plt.show()
到此这篇关于纯numpy实现卷积神经网络实现手写数字识别的实践的文章就介绍到这了,更多相关numpy手写数字识别内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!