经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » NumPy » 查看文章
浅谈numpy.where() 的用法和np.argsort()的用法说明
来源:jb51  时间:2021/5/10 17:19:27  对本文有异议

numpy.where() 有两种用法:

1. np.where(condition, x, y)

满足条件(condition),输出x,不满足输出y。

如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

  1. >>> aa = np.arange(10)
  2. >>> np.where(aa,1,-1)
  3. array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0为False,所以第一个输出-1
  4. >>> np.where(aa > 5,1,-1)
  5. array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])
  6.  
  7. >>> np.where([[True,False], [True,True]], # 官网上的例子
  8. [[1,2], [3,4]],
  9. [[9,8], [7,6]])
  10. array([[1, 8],
  11. [3, 4]])

上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:

  1. >>> a = 10
  2. >>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
  3. [["chosen","not chosen"], ["chosen","not chosen"]],
  4. [["not chosen","chosen"], ["not chosen","chosen"]])
  5.  
  6. array([['chosen', 'chosen'],
  7. ['chosen', 'chosen']], dtype='<U10')

2. np.where(condition)

只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

  1. >>> a = np.array([2,4,6,8,10])
  2. >>> np.where(a > 5) # 返回索引
  3. (array([2, 3, 4]),)
  4. >>> a[np.where(a > 5)] # 等价于 a[a>5]
  5. array([ 6, 8, 10])
  6.  
  7. >>> np.where([[0, 1], [1, 0]])
  8. (array([0, 1]), array([1, 0]))

上面这个例子条件中[[0,1],[1,0]]的真值为两个1,各自的第一维坐标为[0,1],第二维坐标为[1,0] 。

下面看个复杂点的例子:

  1. >>> a = np.arange(27).reshape(3,3,3)
  2. >>> a
  3. array([[[ 0, 1, 2],
  4. [ 3, 4, 5],
  5. [ 6, 7, 8]],
  6.  
  7. [[ 9, 10, 11],
  8. [12, 13, 14],
  9. [15, 16, 17]],
  10.  
  11. [[18, 19, 20],
  12. [21, 22, 23],
  13. [24, 25, 26]]])
  14.  
  15. >>> np.where(a > 5)
  16. (array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
  17. array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
  18. array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))
  19.  
  20.  
  21. # 符合条件的元素为
  22. [ 6, 7, 8]],
  23.  
  24. [[ 9, 10, 11],
  25. [12, 13, 14],
  26. [15, 16, 17]],
  27.  
  28. [[18, 19, 20],
  29. [21, 22, 23],
  30. [24, 25, 26]]]

所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。

需要注意的一点是,输入的不能直接是list,需要转为array或者为array才行。比如range(10)和np.arange(10)后者返回的是数组,使用np.where才能达到效果。

np.argsort()的用法

  1. numpy.argsort(a, axis=-1, kind='quicksort', order=None)

argsort(a)#获取a从小到大排列的数组

argsort(-a)#获取a从大到小排列的数组

argmin(a)#获取a最小值下标

argmax(a)#获取a最大值下标

功能: 将矩阵a按照axis排序,并返回排序后的下标

参数: a:输入矩阵, axis:需要排序的维度

返回值: 输出排序后的下标

(一维数组)

  1. import numpy as np
  2. x = np.array([1,4,3,-1,6,9])
  3. x.argsort()
  4. # array([3, 0, 1, 2, 4, 5], dtype=int64)

可以发现,argsort()是将X中的元素从小到大排序后,提取对应的索引index,然后输出到y

如x[3]=-1最小,x[5]=9最大

所以取数组x的最小值可以写成:

  1. x[x.argsort()[0]]

或者用argmin()函数

  1. x[x.argmin()]

数组x的最大值,写成:

  1. x[x.argsort()[-1]] # -1代表从后往前反向的索引

或者用argmax()函数,不再详述

  1. x[x.argmax()]

输出排序后的数组

  1. x[x.argsort()]
  2. # 或
  3. x[np.argsort(x)]

(二维数组)

  1. x = np.array([[1,5,4],[-1,6,9]])
  2. # [[ 1 5 4]
  3. # [-1 6 9]]

沿着行向下(每列)的元素进行排序

  1. np.argsort(x,axis=0)
  2. # array([[1, 0, 0],
  3. # [0, 1, 1]], dtype=int64)

沿着列向右(每行)的元素进行排序

  1. np.argsort(x,axis=1)
  2. # array([[0, 2, 1],
  3. # [0, 1, 2]], dtype=int64)

补充:Numpy.unravel_index()和Numpy.argsort()

由于编程和文笔都较差,写的不好请见谅...

今天下午学习LDA模型的python实现,其中用到了Numpy库,想详细了解用到的每个函数,便在网上找资料。

其中遇到了Numpy.unravel_index()和Numpy.argsort(),看了好半天才弄懂orz心血来潮记录一下

首先,附上英文官方文档。https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.argsort.htmlhttps://docs.scipy.org/doc/numpy/reference/generated/numpy.unravel_index.html

讲讲我对Numpy.argsort()的理解:

  1. numpy.argsort(a, axis=-1, kind='quicksort', order=None)

参数说明:a要排序的数组,

axis整型或者None,如果是None,数组将变成扁平数组(即变成一行数组)

kind排序算法,快排,归并排序,堆排序...

order自定义字段顺序

返回: index_array :n维下标数组

实例:一维数组

二维数组

然后讲讲我对numpy.unravel_index的理解~

  1. numpy.unravel_index(indices, dims, order='C')

参数说明:indices数组

dims数组的维度大小

order:{C,F}(C行为主,F列为主)

返回: unraveled_coords为n维数组的元组

实例: 这个地方想了好久才明白T T

简单解释一下,22/6=3......4

总算写完了!

以上为个人经验,希望能给大家一个参考,也希望大家多多支持w3xue。如有错误或未考虑完全的地方,望不吝赐教。

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号