经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » MATLAB » 查看文章
MATLAB实例:PCA降维
来源:cnblogs  作者:凯鲁嘎吉  时间:2019/9/27 9:51:07  对本文有异议

MATLAB实例:PCA降维

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1. iris数据

  1. 5.1,3.5,1.4,0.2,1
  2. 4.9,3.0,1.4,0.2,1
  3. 4.7,3.2,1.3,0.2,1
  4. 4.6,3.1,1.5,0.2,1
  5. 5.0,3.6,1.4,0.2,1
  6. 5.4,3.9,1.7,0.4,1
  7. 4.6,3.4,1.4,0.3,1
  8. 5.0,3.4,1.5,0.2,1
  9. 4.4,2.9,1.4,0.2,1
  10. 4.9,3.1,1.5,0.1,1
  11. 5.4,3.7,1.5,0.2,1
  12. 4.8,3.4,1.6,0.2,1
  13. 4.8,3.0,1.4,0.1,1
  14. 4.3,3.0,1.1,0.1,1
  15. 5.8,4.0,1.2,0.2,1
  16. 5.7,4.4,1.5,0.4,1
  17. 5.4,3.9,1.3,0.4,1
  18. 5.1,3.5,1.4,0.3,1
  19. 5.7,3.8,1.7,0.3,1
  20. 5.1,3.8,1.5,0.3,1
  21. 5.4,3.4,1.7,0.2,1
  22. 5.1,3.7,1.5,0.4,1
  23. 4.6,3.6,1.0,0.2,1
  24. 5.1,3.3,1.7,0.5,1
  25. 4.8,3.4,1.9,0.2,1
  26. 5.0,3.0,1.6,0.2,1
  27. 5.0,3.4,1.6,0.4,1
  28. 5.2,3.5,1.5,0.2,1
  29. 5.2,3.4,1.4,0.2,1
  30. 4.7,3.2,1.6,0.2,1
  31. 4.8,3.1,1.6,0.2,1
  32. 5.4,3.4,1.5,0.4,1
  33. 5.2,4.1,1.5,0.1,1
  34. 5.5,4.2,1.4,0.2,1
  35. 4.9,3.1,1.5,0.1,1
  36. 5.0,3.2,1.2,0.2,1
  37. 5.5,3.5,1.3,0.2,1
  38. 4.9,3.1,1.5,0.1,1
  39. 4.4,3.0,1.3,0.2,1
  40. 5.1,3.4,1.5,0.2,1
  41. 5.0,3.5,1.3,0.3,1
  42. 4.5,2.3,1.3,0.3,1
  43. 4.4,3.2,1.3,0.2,1
  44. 5.0,3.5,1.6,0.6,1
  45. 5.1,3.8,1.9,0.4,1
  46. 4.8,3.0,1.4,0.3,1
  47. 5.1,3.8,1.6,0.2,1
  48. 4.6,3.2,1.4,0.2,1
  49. 5.3,3.7,1.5,0.2,1
  50. 5.0,3.3,1.4,0.2,1
  51. 7.0,3.2,4.7,1.4,2
  52. 6.4,3.2,4.5,1.5,2
  53. 6.9,3.1,4.9,1.5,2
  54. 5.5,2.3,4.0,1.3,2
  55. 6.5,2.8,4.6,1.5,2
  56. 5.7,2.8,4.5,1.3,2
  57. 6.3,3.3,4.7,1.6,2
  58. 4.9,2.4,3.3,1.0,2
  59. 6.6,2.9,4.6,1.3,2
  60. 5.2,2.7,3.9,1.4,2
  61. 5.0,2.0,3.5,1.0,2
  62. 5.9,3.0,4.2,1.5,2
  63. 6.0,2.2,4.0,1.0,2
  64. 6.1,2.9,4.7,1.4,2
  65. 5.6,2.9,3.6,1.3,2
  66. 6.7,3.1,4.4,1.4,2
  67. 5.6,3.0,4.5,1.5,2
  68. 5.8,2.7,4.1,1.0,2
  69. 6.2,2.2,4.5,1.5,2
  70. 5.6,2.5,3.9,1.1,2
  71. 5.9,3.2,4.8,1.8,2
  72. 6.1,2.8,4.0,1.3,2
  73. 6.3,2.5,4.9,1.5,2
  74. 6.1,2.8,4.7,1.2,2
  75. 6.4,2.9,4.3,1.3,2
  76. 6.6,3.0,4.4,1.4,2
  77. 6.8,2.8,4.8,1.4,2
  78. 6.7,3.0,5.0,1.7,2
  79. 6.0,2.9,4.5,1.5,2
  80. 5.7,2.6,3.5,1.0,2
  81. 5.5,2.4,3.8,1.1,2
  82. 5.5,2.4,3.7,1.0,2
  83. 5.8,2.7,3.9,1.2,2
  84. 6.0,2.7,5.1,1.6,2
  85. 5.4,3.0,4.5,1.5,2
  86. 6.0,3.4,4.5,1.6,2
  87. 6.7,3.1,4.7,1.5,2
  88. 6.3,2.3,4.4,1.3,2
  89. 5.6,3.0,4.1,1.3,2
  90. 5.5,2.5,4.0,1.3,2
  91. 5.5,2.6,4.4,1.2,2
  92. 6.1,3.0,4.6,1.4,2
  93. 5.8,2.6,4.0,1.2,2
  94. 5.0,2.3,3.3,1.0,2
  95. 5.6,2.7,4.2,1.3,2
  96. 5.7,3.0,4.2,1.2,2
  97. 5.7,2.9,4.2,1.3,2
  98. 6.2,2.9,4.3,1.3,2
  99. 5.1,2.5,3.0,1.1,2
  100. 5.7,2.8,4.1,1.3,2
  101. 6.3,3.3,6.0,2.5,3
  102. 5.8,2.7,5.1,1.9,3
  103. 7.1,3.0,5.9,2.1,3
  104. 6.3,2.9,5.6,1.8,3
  105. 6.5,3.0,5.8,2.2,3
  106. 7.6,3.0,6.6,2.1,3
  107. 4.9,2.5,4.5,1.7,3
  108. 7.3,2.9,6.3,1.8,3
  109. 6.7,2.5,5.8,1.8,3
  110. 7.2,3.6,6.1,2.5,3
  111. 6.5,3.2,5.1,2.0,3
  112. 6.4,2.7,5.3,1.9,3
  113. 6.8,3.0,5.5,2.1,3
  114. 5.7,2.5,5.0,2.0,3
  115. 5.8,2.8,5.1,2.4,3
  116. 6.4,3.2,5.3,2.3,3
  117. 6.5,3.0,5.5,1.8,3
  118. 7.7,3.8,6.7,2.2,3
  119. 7.7,2.6,6.9,2.3,3
  120. 6.0,2.2,5.0,1.5,3
  121. 6.9,3.2,5.7,2.3,3
  122. 5.6,2.8,4.9,2.0,3
  123. 7.7,2.8,6.7,2.0,3
  124. 6.3,2.7,4.9,1.8,3
  125. 6.7,3.3,5.7,2.1,3
  126. 7.2,3.2,6.0,1.8,3
  127. 6.2,2.8,4.8,1.8,3
  128. 6.1,3.0,4.9,1.8,3
  129. 6.4,2.8,5.6,2.1,3
  130. 7.2,3.0,5.8,1.6,3
  131. 7.4,2.8,6.1,1.9,3
  132. 7.9,3.8,6.4,2.0,3
  133. 6.4,2.8,5.6,2.2,3
  134. 6.3,2.8,5.1,1.5,3
  135. 6.1,2.6,5.6,1.4,3
  136. 7.7,3.0,6.1,2.3,3
  137. 6.3,3.4,5.6,2.4,3
  138. 6.4,3.1,5.5,1.8,3
  139. 6.0,3.0,4.8,1.8,3
  140. 6.9,3.1,5.4,2.1,3
  141. 6.7,3.1,5.6,2.4,3
  142. 6.9,3.1,5.1,2.3,3
  143. 5.8,2.7,5.1,1.9,3
  144. 6.8,3.2,5.9,2.3,3
  145. 6.7,3.3,5.7,2.5,3
  146. 6.7,3.0,5.2,2.3,3
  147. 6.3,2.5,5.0,1.9,3
  148. 6.5,3.0,5.2,2.0,3
  149. 6.2,3.4,5.4,2.3,3
  150. 5.9,3.0,5.1,1.8,3

2. MATLAB程序

  1. function [COEFF,SCORE,latent,tsquared,explained,mu,data_PCA]=pca_demo()
  2. x=load('iris.data');
  3. [~,d]=size(x);
  4. k=d-1; %前k个主成分
  5. x=zscore(x(:,1:d-1)); %归一化数据
  6. [COEFF,SCORE,latent,tsquared,explained,mu]=pca(x);
  7. % 1)获取样本数据 X ,样本为行,特征为列。
  8. % 2)对样本数据中心化,得SS = X的各列减去各列的均值)。
  9. % 3)求 S 的协方差矩阵 C = cov(S)
  10. % 4) 对协方差矩阵 C 进行特征分解 [P,Lambda] = eig(C);
  11. % 5)结束。
  12. % 1、输入参数 X 是一个 n p 列的矩阵。每行代表一个样本观察数据,每列则代表一个属性,或特征。
  13. % 2COEFF 就是所需要的特征向量组成的矩阵,是一个 p p 列的矩阵,没列表示一个出成分向量,经常也称为(协方差矩阵的)特征向量。并且是按照对应特征值降序排列的。所以,如果只需要前 k 个主成分向量,可通过:COEFF(:,1:k) 来获得。
  14. % 3SCORE 表示原数据在各主成分向量上的投影。但注意:是原数据经过中心化后在主成分向量上的投影。即通过:SCORE = x0*COEFF 求得。其中 x0 是中心平移后的 X(注意:是对维度进行中心平移,而非样本。),因此在重建时,就需要加上这个平均值了。
  15. % 4latent 是一个列向量,表示特征值,并且按降序排列。
  16. % 5tsquared Hotelling的每个观测值XT平方统计量
  17. % 6explained 由每个主成分解释的总方差的百分比
  18. % 7mu 每个变量X的估计平均值
  19. data_PCA=x*COEFF(:,1:k);
  20. latent1=100*latent/sum(latent);%将latent总和统一为100,便于观察贡献率
  21. pareto(latent1);%调用matla画图 pareto仅绘制累积分布的前95%,因此y中的部分元素并未显示
  22. xlabel('Principal Component');
  23. ylabel('Variance Explained (%)');
  24. % 图中的线表示的累积变量解释程度
  25. print(gcf,'-dpng','Iris PCA.png');
  26. iris_pac=data_PCA(:,1:2) ;
  27. save iris_pca iris_pac

3. 结果

iris_pca:前两个主成分

  1. -2.25698063306803 0.504015404227653
  2. -2.07945911889541 -0.653216393612590
  3. -2.36004408158421 -0.317413944570283
  4. -2.29650366000389 -0.573446612971233
  5. -2.38080158645275 0.672514410791076
  6. -2.06362347633724 1.51347826673567
  7. -2.43754533573242 0.0743137171331950
  8. -2.22638326740708 0.246787171742162
  9. -2.33413809644009 -1.09148977019584
  10. -2.18136796941948 -0.447131117450110
  11. -2.15626287481026 1.06702095645556
  12. -2.31960685513084 0.158057945820095
  13. -2.21665671559727 -0.706750478104682
  14. -2.63090249246321 -0.935149145374822
  15. -2.18497164997156 1.88366804891533
  16. -2.24394778052703 2.71328133141014
  17. -2.19539570001472 1.50869601039751
  18. -2.18286635818774 0.512587093716441
  19. -1.88775015418968 1.42633236069007
  20. -2.33213619695782 1.15416686250116
  21. -1.90816386828207 0.429027879924458
  22. -2.19728429051438 0.949277150423224
  23. -2.76490709741649 0.487882574439700
  24. -1.81433337754274 0.106394361814184
  25. -2.22077768737273 0.161644638073716
  26. -1.95048968523510 -0.605862870440206
  27. -2.04521166172712 0.265126114804279
  28. -2.16095425532709 0.550173363315497
  29. -2.13315967968331 0.335516397664229
  30. -2.26121491382610 -0.313827252316662
  31. -2.13739396044139 -0.482326258880086
  32. -1.82582143036022 0.443780130732953
  33. -2.59949431958629 1.82237008322707
  34. -2.42981076672382 2.17809479520796
  35. -2.18136796941948 -0.447131117450110
  36. -2.20373717203888 -0.183722323644913
  37. -2.03759040170113 0.682669420156327
  38. -2.18136796941948 -0.447131117450110
  39. -2.42781878392261 -0.879223932713649
  40. -2.16329994558551 0.291749566745466
  41. -2.27889273592867 0.466429134628597
  42. -1.86545776627869 -2.31991965918865
  43. -2.54929404704891 -0.452301129580194
  44. -1.95772074352968 0.495730895348582
  45. -2.12624969840005 1.16752080832811
  46. -2.06842816583668 -0.689607099127106
  47. -2.37330741591874 1.14679073709691
  48. -2.39018434748641 -0.361180775489047
  49. -2.21934619663183 1.02205856145225
  50. -2.19858869176329 0.0321302060908945
  51. 1.10030752013391 0.860230593245533
  52. 0.730035752246062 0.596636784545418
  53. 1.23796221659453 0.612769614333371
  54. 0.395980710562889 -1.75229858398514
  55. 1.06901265623960 -0.211050862633647
  56. 0.383174475987114 -0.589088965722193
  57. 0.746215185580377 0.776098608766709
  58. -0.496201068006129 -1.84269556949638
  59. 0.923129796737431 0.0302295549588077
  60. 0.00495143780650871 -1.02596403732389
  61. -0.124281108093219 -2.64918765259090
  62. 0.437265238506424 -0.0586846858581760
  63. 0.549792126592992 -1.76666307900171
  64. 0.714770518429262 -0.184815166484382
  65. -0.0371339806719297 -0.431350035919633
  66. 0.872966018474250 0.508295314415273
  67. 0.346844440799832 -0.189985178614466
  68. 0.152880381053472 -0.788085297090142
  69. 1.21124542423444 -1.62790202112846
  70. 0.156417163578196 -1.29875232891050
  71. 0.735791135537219 0.401126570248885
  72. 0.470792483676532 -0.415217206131680
  73. 1.22388807504403 -0.937773165086814
  74. 0.627279600231826 -0.415419947028686
  75. 0.698133985336190 -0.0632819273014206
  76. 0.870620328215835 0.249871517845242
  77. 1.25003445866275 -0.0823442389434431
  78. 1.35370481019450 0.327722365822153
  79. 0.659915359649250 -0.223597000167979
  80. -0.0471236447211597 -1.05368247816741
  81. 0.121128417400412 -1.55837168956507
  82. 0.0140710866007487 -1.56813894313840
  83. 0.235222818975321 -0.773333046281646
  84. 1.05316323317206 -0.634774729305402
  85. 0.220677797156699 -0.279909968621073
  86. 0.430341476713787 0.852281697154445
  87. 1.04590946111265 0.520453696157683
  88. 1.03241950881290 -1.38781716762055
  89. 0.0668436673617666 -0.211910813930204
  90. 0.274505447436587 -1.32537578085168
  91. 0.271425764670620 -1.11570381243558
  92. 0.621089830946741 0.0274506709978046
  93. 0.328903506457842 -0.985598883763833
  94. -0.372380114621411 -2.01119457605980
  95. 0.281999617970590 -0.851099454545845
  96. 0.0887557702224096 -0.174324544331148
  97. 0.223607676665854 -0.379214256409087
  98. 0.571967341693057 -0.153206717308028
  99. -0.455486948803962 -1.53432438068788
  100. 0.251402252309636 -0.593871222060355
  101. 1.84150338645482 0.868786147264828
  102. 1.14933941416981 -0.698984450845645
  103. 2.19898270027627 0.552618780551384
  104. 1.43388176486790 -0.0498435417617587
  105. 1.86165398830779 0.290220535935809
  106. 2.74500070081969 0.785799704159685
  107. 0.357177895625210 -1.55488557249365
  108. 2.29531637451915 0.408149356863061
  109. 1.99505169024551 -0.721448439846371
  110. 2.25998344407884 1.91502747107928
  111. 1.36134878398531 0.691631011499905
  112. 1.59372545693795 -0.426818952656741
  113. 1.87796051113409 0.412949339203311
  114. 1.24890257443547 -1.16349352357816
  115. 1.45917315700813 -0.442664601834978
  116. 1.58649439864337 0.674774813132046
  117. 1.46636772102851 0.252347085727036
  118. 2.42924030093571 2.54822056527013
  119. 3.29809226641255 -0.00235343587272177
  120. 1.24979406018816 -1.71184899071237
  121. 2.03368323142868 0.904369044486726
  122. 0.970663302005081 -0.569267277965818
  123. 2.88838806680663 0.396463170625287
  124. 1.32475563655861 -0.485135293486995
  125. 1.69855040646181 1.01076227706927
  126. 1.95119099025002 0.999984474306318
  127. 1.16799162725452 -0.317831851008113
  128. 1.01637609822602 0.0653241212065782
  129. 1.78004554289349 -0.192627479858818
  130. 1.85855159177699 0.553527164026207
  131. 2.42736549094542 0.245830911619345
  132. 2.30834922706014 2.61741528404554
  133. 1.85415981777379 -0.184055790370030
  134. 1.10756129219332 -0.294997832217552
  135. 1.19347091639304 -0.814439294423699
  136. 2.79159729280499 0.841927657717863
  137. 1.57487925633390 1.06889360300461
  138. 1.34254676764379 0.420846092290459
  139. 0.920349720485088 0.0191661621187343
  140. 1.84736314547313 0.670177571688802
  141. 2.00942543830962 0.608358978317639
  142. 1.89676252747561 0.683734258412757
  143. 1.14933941416981 -0.698984450845645
  144. 2.03648602144585 0.861797777652503
  145. 1.99500750598298 1.04504903502442
  146. 1.86427657131500 0.381543630923962
  147. 1.55328823048458 -0.902290843047121
  148. 1.51576710303099 0.265903772450991
  149. 1.37179554779330 1.01296839034343
  150. 0.956095566421630 -0.0222095406309480

累计贡献率

可见:前两个主成分已经占了95%的贡献程度。这两个主成分可以近似表示整个数据。

原文链接:http://www.cnblogs.com/kailugaji/p/11594507.html

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号