1. 数据类型 type()
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Yongqiang Cheng
-
- from __future__ import absolute_import
- from __future__ import print_function
- from __future__ import division
-
- import os
- import sys
-
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..')
- current_directory = os.path.dirname(os.path.abspath(__file__))
-
- import numpy as np
- # import tensorflow as tf
- import cv2
- import time
-
- print(16 * "++--")
- print("current_directory:", current_directory)
-
- PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR.
- print("Python list")
- print("PIXEL_MEAN:", PIXEL_MEAN)
- print("type(PIXEL_MEAN):", type(PIXEL_MEAN))
- print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n")
-
- PIXEL_MEAN_array = np.array(PIXEL_MEAN)
- print("NumPy array")
- print("PIXEL_MEAN_array:", PIXEL_MEAN_array)
- print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array))
- print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0]))
- print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype)
-
- /usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0
- ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--
- current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow
- Python list
- PIXEL_MEAN: [123.68, 116.779, 103.939]
- type(PIXEL_MEAN): <type 'list'>
- type(PIXEL_MEAN[0]): <type 'float'>
-
- NumPy array
- PIXEL_MEAN_array: [123.68 116.779 103.939]
- type(PIXEL_MEAN_array): <type 'numpy.ndarray'>
- type(PIXEL_MEAN_array[0]): <type 'numpy.float64'>
- PIXEL_MEAN_array.dtype: float64
-
- Process finished with exit code 0
2. 数据融合 (data fusion)
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Yongqiang Cheng
-
- from __future__ import absolute_import
- from __future__ import print_function
- from __future__ import division
-
- import os
- import sys
-
- sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..')
- current_directory = os.path.dirname(os.path.abspath(__file__))
-
- import numpy as np
- # import tensorflow as tf
- import cv2
- import time
-
- print(16 * "++--")
- print("current_directory:", current_directory)
-
- PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR.
- print("Python list")
- print("PIXEL_MEAN:", PIXEL_MEAN)
- print("type(PIXEL_MEAN):", type(PIXEL_MEAN))
- print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n")
-
- PIXEL_MEAN_array = np.array(PIXEL_MEAN)
- print("NumPy array")
- print("PIXEL_MEAN_array:", PIXEL_MEAN_array)
- print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array))
- print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0]))
- print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype, "\n")
-
- image_array = np.array(
- [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], [[21, 22, 23], [24, 25, 26], [27, 28, 29], [30, 31, 32]]])
- print("image_array:", image_array)
- print("type(image_array):", type(image_array))
- print("type(image_array[0]):", type(image_array[0]))
- print("image_array.dtype:", image_array.dtype, "\n")
-
- image_array_fusion = image_array + np.array(PIXEL_MEAN)
- print("image_array_fusion:", image_array_fusion)
- print("type(image_array_fusion):", type(image_array_fusion))
- print("type(image_array_fusion[0]):", type(image_array_fusion[0]))
- print("image_array_fusion.dtype:", image_array_fusion.dtype)
-
- /usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0
- ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--
- current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow
- Python list
- PIXEL_MEAN: [123.68, 116.779, 103.939]
- type(PIXEL_MEAN): <type 'list'>
- type(PIXEL_MEAN[0]): <type 'float'>
-
- NumPy array
- PIXEL_MEAN_array: [123.68 116.779 103.939]
- type(PIXEL_MEAN_array): <type 'numpy.ndarray'>
- type(PIXEL_MEAN_array[0]): <type 'numpy.float64'>
- PIXEL_MEAN_array.dtype: float64
-
- image_array: [[[ 1 2 3]
- [ 4 5 6]
- [ 7 8 9]
- [10 11 12]]
-
- [[21 22 23]
- [24 25 26]
- [27 28 29]
- [30 31 32]]]
- type(image_array): <type 'numpy.ndarray'>
- type(image_array[0]): <type 'numpy.ndarray'>
- image_array.dtype: int64
-
- image_array_fusion: [[[124.68 118.779 106.939]
- [127.68 121.779 109.939]
- [130.68 124.779 112.939]
- [133.68 127.779 115.939]]
-
- [[144.68 138.779 126.939]
- [147.68 141.779 129.939]
- [150.68 144.779 132.939]
- [153.68 147.779 135.939]]]
- type(image_array_fusion): <type 'numpy.ndarray'>
- type(image_array_fusion[0]): <type 'numpy.ndarray'>
- image_array_fusion.dtype: float64
-
- Process finished with exit code 0
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持w3xue。