经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » NumPy » 查看文章
Python list与NumPy array 区分详解
来源:jb51  时间:2019/11/6 14:06:08  对本文有异议

1. 数据类型 type()

  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # Yongqiang Cheng
  4.  
  5. from __future__ import absolute_import
  6. from __future__ import print_function
  7. from __future__ import division
  8.  
  9. import os
  10. import sys
  11.  
  12. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..')
  13. current_directory = os.path.dirname(os.path.abspath(__file__))
  14.  
  15. import numpy as np
  16. # import tensorflow as tf
  17. import cv2
  18. import time
  19.  
  20. print(16 * "++--")
  21. print("current_directory:", current_directory)
  22.  
  23. PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR.
  24. print("Python list")
  25. print("PIXEL_MEAN:", PIXEL_MEAN)
  26. print("type(PIXEL_MEAN):", type(PIXEL_MEAN))
  27. print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n")
  28.  
  29. PIXEL_MEAN_array = np.array(PIXEL_MEAN)
  30. print("NumPy array")
  31. print("PIXEL_MEAN_array:", PIXEL_MEAN_array)
  32. print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array))
  33. print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0]))
  34. print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype)
  35.  
  1. /usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0
  2. ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--
  3. current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow
  4. Python list
  5. PIXEL_MEAN: [123.68, 116.779, 103.939]
  6. type(PIXEL_MEAN): <type 'list'>
  7. type(PIXEL_MEAN[0]): <type 'float'>
  8.  
  9. NumPy array
  10. PIXEL_MEAN_array: [123.68 116.779 103.939]
  11. type(PIXEL_MEAN_array): <type 'numpy.ndarray'>
  12. type(PIXEL_MEAN_array[0]): <type 'numpy.float64'>
  13. PIXEL_MEAN_array.dtype: float64
  14.  
  15. Process finished with exit code 0

2. 数据融合 (data fusion)

  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # Yongqiang Cheng
  4.  
  5. from __future__ import absolute_import
  6. from __future__ import print_function
  7. from __future__ import division
  8.  
  9. import os
  10. import sys
  11.  
  12. sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..')
  13. current_directory = os.path.dirname(os.path.abspath(__file__))
  14.  
  15. import numpy as np
  16. # import tensorflow as tf
  17. import cv2
  18. import time
  19.  
  20. print(16 * "++--")
  21. print("current_directory:", current_directory)
  22.  
  23. PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR.
  24. print("Python list")
  25. print("PIXEL_MEAN:", PIXEL_MEAN)
  26. print("type(PIXEL_MEAN):", type(PIXEL_MEAN))
  27. print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n")
  28.  
  29. PIXEL_MEAN_array = np.array(PIXEL_MEAN)
  30. print("NumPy array")
  31. print("PIXEL_MEAN_array:", PIXEL_MEAN_array)
  32. print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array))
  33. print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0]))
  34. print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype, "\n")
  35.  
  36. image_array = np.array(
  37. [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], [[21, 22, 23], [24, 25, 26], [27, 28, 29], [30, 31, 32]]])
  38. print("image_array:", image_array)
  39. print("type(image_array):", type(image_array))
  40. print("type(image_array[0]):", type(image_array[0]))
  41. print("image_array.dtype:", image_array.dtype, "\n")
  42.  
  43. image_array_fusion = image_array + np.array(PIXEL_MEAN)
  44. print("image_array_fusion:", image_array_fusion)
  45. print("type(image_array_fusion):", type(image_array_fusion))
  46. print("type(image_array_fusion[0]):", type(image_array_fusion[0]))
  47. print("image_array_fusion.dtype:", image_array_fusion.dtype)
  48.  
  1. /usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0
  2. ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--
  3. current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow
  4. Python list
  5. PIXEL_MEAN: [123.68, 116.779, 103.939]
  6. type(PIXEL_MEAN): <type 'list'>
  7. type(PIXEL_MEAN[0]): <type 'float'>
  8.  
  9. NumPy array
  10. PIXEL_MEAN_array: [123.68 116.779 103.939]
  11. type(PIXEL_MEAN_array): <type 'numpy.ndarray'>
  12. type(PIXEL_MEAN_array[0]): <type 'numpy.float64'>
  13. PIXEL_MEAN_array.dtype: float64
  14.  
  15. image_array: [[[ 1 2 3]
  16. [ 4 5 6]
  17. [ 7 8 9]
  18. [10 11 12]]
  19.  
  20. [[21 22 23]
  21. [24 25 26]
  22. [27 28 29]
  23. [30 31 32]]]
  24. type(image_array): <type 'numpy.ndarray'>
  25. type(image_array[0]): <type 'numpy.ndarray'>
  26. image_array.dtype: int64
  27.  
  28. image_array_fusion: [[[124.68 118.779 106.939]
  29. [127.68 121.779 109.939]
  30. [130.68 124.779 112.939]
  31. [133.68 127.779 115.939]]
  32.  
  33. [[144.68 138.779 126.939]
  34. [147.68 141.779 129.939]
  35. [150.68 144.779 132.939]
  36. [153.68 147.779 135.939]]]
  37. type(image_array_fusion): <type 'numpy.ndarray'>
  38. type(image_array_fusion[0]): <type 'numpy.ndarray'>
  39. image_array_fusion.dtype: float64
  40.  
  41. Process finished with exit code 0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持w3xue。

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号