PropertyNamingStrategy
有四种序列化方式。
CamelCase策略,Java对象属性:personId,序列化后属性:persionId – 实际只改了首字母 大写变小写
PascalCase策略,Java对象属性:personId,序列化后属性:PersonId – 实际只改了首字母 小写变大写
SnakeCase策略,Java对象属性:personId,序列化后属性:person_id --大写字母前加下划线
KebabCase策略,Java对象属性:personId,序列化后属性:person-id -大写字母前加减号
- public enum PropertyNamingStrategy {
- CamelCase, //驼峰
- PascalCase, //
- SnakeCase, //大写字母前加下划线
- KebabCase;
- public String translate(String propertyName) {
- switch (this) {
- case SnakeCase: {
- StringBuilder buf = new StringBuilder();
- for (int i = 0; i < propertyName.length(); ++i) {
- char ch = propertyName.charAt(i);
- if (ch >= 'A' && ch <= 'Z') {
- char ch_ucase = (char) (ch + 32);
- if (i > 0) {
- buf.append('_');
- }
- buf.append(ch_ucase);
- } else {
- buf.append(ch);
- }
- }
- return buf.toString();
- }
- case KebabCase: {
- StringBuilder buf = new StringBuilder();
- for (int i = 0; i < propertyName.length(); ++i) {
- char ch = propertyName.charAt(i);
- if (ch >= 'A' && ch <= 'Z') {
- char ch_ucase = (char) (ch + 32);
- if (i > 0) {
- buf.append('-');
- }
- buf.append(ch_ucase);
- } else {
- buf.append(ch);
- }
- }
- return buf.toString();
- }
- case PascalCase: {
- char ch = propertyName.charAt(0);
- if (ch >= 'a' && ch <= 'z') {
- char[] chars = propertyName.toCharArray();
- chars[0] -= 32;
- return new String(chars);
- }
- return propertyName;
- }
- case CamelCase: {
- char ch = propertyName.charAt(0);
- if (ch >= 'A' && ch <= 'Z') {
- char[] chars = propertyName.toCharArray();
- chars[0] += 32;
- return new String(chars);
- }
- return propertyName;
- }
- default:
- return propertyName;
- }
- }
发挥作用的是translate方法
指定序列化格式
了解了PropertyNamingStrategy后,看其是怎么发挥作用的,
阅读源码发现在buildBeanInfo时(注意是将bean转为json时构建json信息时,如果是map,JSONObject不会有这个转换)
- if(propertyNamingStrategy != null && !fieldAnnotationAndNameExists){
- propertyName = propertyNamingStrategy.translate(propertyName);
- }
这里分别调用PropertyNamingStrategy对应的方法处理
常见误区
那么也就是说通过PropertyNamingStrategy的方式设置输出格式,只对javaBean有效,并且,至于转换结果,需要根据PropertyNamingStrategy#translate方法的内容具体分析
如果javaBean中的字段是用下划线间隔的,那么指定CamelCase进行序列化,也是无法转成驼峰的!
例如
- Student student = new Student();
- student.setTest_name("test");
- SerializeConfig serializeConfig = new SerializeConfig();
- serializeConfig.setPropertyNamingStrategy(PropertyNamingStrategy.CamelCase);
- System.out.println(JSON.toJSONString(student,serializeConfig));
输出{test_name":“test”},因为执行 PropertyNamingStrategy#translate的CamelCase,仅仅只是,判断如果首字母大写转成小写。并不能完成,下划线到驼峰的转换
- case CamelCase: {
- char ch = propertyName.charAt(0);
- if (ch >= 'A' && ch <= 'Z') {
- char[] chars = propertyName.toCharArray();
- chars[0] += 32;
- return new String(chars);
- }
-
- return propertyName;
- }
指定反序列化格式
智能匹配功能
fastjson反序列化时,是能自动下划线转驼峰的。这点是很方便的。,在反序列化时无论采用那种形式都能匹配成功并设置值
- String str = "{'user_name':123}";
- User user = JSON.parseObject(str, User.class);
- System.out.println(user);
输出{userName=‘123’}
fastjson智能匹配处理过程
fastjson在进行反序列化的时候,对每一个json字段的key值解析时,会调用
com.alibaba.fastjson.parser.deserializer.JavaBeanDeserializer#parseField
这个方法

以上面的例子为例,通过debug打个断点看一下解析user_id时的处理逻辑。
此时这个方法中的key为user_id,object为要反序列化的结果对象,这个例子中就是FastJsonTestMain.UserInfo
- public boolean parseField(DefaultJSONParser parser, String key, Object object, Type objectType,
- Map<String, Object> fieldValues, int[] setFlags) {
- JSONLexer lexer = parser.lexer; // xxx
- //是否禁用智能匹配;
- final int disableFieldSmartMatchMask = Feature.DisableFieldSmartMatch.mask;
- final int initStringFieldAsEmpty = Feature.InitStringFieldAsEmpty.mask;
- FieldDeserializer fieldDeserializer;
- if (lexer.isEnabled(disableFieldSmartMatchMask) || (this.beanInfo.parserFeatures & disableFieldSmartMatchMask) != 0) {
- fieldDeserializer = getFieldDeserializer(key);
- } else if (lexer.isEnabled(initStringFieldAsEmpty) || (this.beanInfo.parserFeatures & initStringFieldAsEmpty) != 0) {
- fieldDeserializer = smartMatch(key);
- } else {
- //进行智能匹配
- fieldDeserializer = smartMatch(key, setFlags);
- }
-
- ***此处省略N多行***
- }
再看下核心的代码,智能匹配smartMatch
- public FieldDeserializer smartMatch(String key, int[] setFlags) {
- if (key == null) {
- return null;
- }
- FieldDeserializer fieldDeserializer = getFieldDeserializer(key, setFlags);
- if (fieldDeserializer == null) {
- if (this.smartMatchHashArray == null) {
- long[] hashArray = new long[sortedFieldDeserializers.length];
- for (int i = 0; i < sortedFieldDeserializers.length; i++) {
- //java字段的nameHashCode,源码见下方
- hashArray[i] = sortedFieldDeserializers[i].fieldInfo.nameHashCode;
- }
- //获取出反序列化目标对象的字段名称hashcode值,并进行排序
- Arrays.sort(hashArray);
- this.smartMatchHashArray = hashArray;
- }
- // smartMatchHashArrayMapping
- long smartKeyHash = TypeUtils.fnv1a_64_lower(key);
- //进行二分查找,判断是否找到
- int pos = Arrays.binarySearch(smartMatchHashArray, smartKeyHash);
- if (pos < 0) {
- //原始字段没有匹配到,用fnv1a_64_extract处理一下再次匹配
- long smartKeyHash1 = TypeUtils.fnv1a_64_extract(key);
- pos = Arrays.binarySearch(smartMatchHashArray, smartKeyHash1);
- }
- boolean is = false;
- if (pos < 0 && (is = key.startsWith("is"))) {
- //上面的操作后仍然没有匹配到,把is去掉后再次进行匹配
- smartKeyHash = TypeUtils.fnv1a_64_extract(key.substring(2));
- pos = Arrays.binarySearch(smartMatchHashArray, smartKeyHash);
- }
- if (pos >= 0) {
- //通过智能匹配字段匹配成功
- if (smartMatchHashArrayMapping == null) {
- short[] mapping = new short[smartMatchHashArray.length];
- Arrays.fill(mapping, (short) -1);
- for (int i = 0; i < sortedFieldDeserializers.length; i++) {
- int p = Arrays.binarySearch(smartMatchHashArray, sortedFieldDeserializers[i].fieldInfo.nameHashCode);
- if (p >= 0) {
- mapping[p] = (short) i;
- }
- }
- smartMatchHashArrayMapping = mapping;
- }
- int deserIndex = smartMatchHashArrayMapping[pos];
- if (deserIndex != -1) {
- if (!isSetFlag(deserIndex, setFlags)) {
- fieldDeserializer = sortedFieldDeserializers[deserIndex];
- }
- }
- }
- if (fieldDeserializer != null) {
- FieldInfo fieldInfo = fieldDeserializer.fieldInfo;
- if ((fieldInfo.parserFeatures & Feature.DisableFieldSmartMatch.mask) != 0) {
- return null;
- }
-
- Class fieldClass = fieldInfo.fieldClass;
- if (is && (fieldClass != boolean.class && fieldClass != Boolean.class)) {
- fieldDeserializer = null;
- }
- }
- }
- return fieldDeserializer;
- }
通过上面的smartMatch方法可以看出,fastjson中之所以能做到下划线自动转驼峰,主要还是因为在进行字段对比时,使用了fnv1a_64_lower和fnv1a_64_extract方法进行了处理。
fnv1a_64_extract方法源码:
- public static long fnv1a_64_extract(String key) {
- long hashCode = fnv1a_64_magic_hashcode;
- for (int i = 0; i < key.length(); ++i) {
- char ch = key.charAt(i);
- //去掉下划线和减号
- if (ch == '_' || ch == '-') {
- continue;
- }
- //大写转小写
- if (ch >= 'A' && ch <= 'Z') {
- ch = (char) (ch + 32);
- }
- hashCode ^= ch;
- hashCode *= fnv1a_64_magic_prime;
- }
- return hashCode;
- }
从源码可以看出,fnv1a_64_extract方法主要做了这个事:
去掉下划线、减号,并大写转小写
总结
fastjson中字段智能匹配的原理是在字段匹配时,使用了TypeUtils.fnv1a_64_lower方法对字段进行全体转小写处理。
之后再用TypeUtils.fnv1a_64_extract方法对json字段进行去掉"_“和”-"符号,再全体转小写处理。
如果上面的操作仍然没有匹配成功,会再进行一次去掉json字段中的is再次进行匹配。
如果上面的操作仍然没有匹配成功,会再进行一次去掉json字段中的is再次进行匹配。
关闭智能匹配的情况
智能匹配时默认开启的,需要手动关闭,看这个例子
- String str = "{'user_name':123}";
- ParserConfig parserConfig = new ParserConfig();
- parserConfig.propertyNamingStrategy = PropertyNamingStrategy.SnakeCase;
- User user = JSON.parseObject(str, User.class, parserConfig,Feature.DisableFieldSmartMatch);
- System.out.println(user);
输出{userName=‘null’}
那么这种情况如何完成下划线到驼峰的转换
那么就需要使用parseConfig了
- String str = "{'user_name':123}";
- ParserConfig parserConfig = new ParserConfig();
- parserConfig.propertyNamingStrategy = PropertyNamingStrategy.SnakeCase;
- User user = JSON.parseObject(str, User.class,parserConfig,Feature.DisableFieldSmartMatch);
- System.out.println(user);
那么此时PropertyNamingStrategy.SnakeCase又是如何发挥作用的?
断点PropertyNamingStrategy#translate方法
发现在构建JavaBeanDeserializer时
- public JavaBeanDeserializer(ParserConfig config, Class<?> clazz, Type type){
- this(config //
- , JavaBeanInfo.build(clazz, type, config.propertyNamingStrategy, config.fieldBased, config.compatibleWithJavaBean, config.isJacksonCompatible())
- );
- }
- if (propertyNamingStrategy != null) {
- propertyName = propertyNamingStrategy.translate(propertyName);
- }
- add(fieldList, new FieldInfo(propertyName, method, field, clazz, type, ordinal, serialzeFeatures, parserFeatures,
- annotation, fieldAnnotation, null, genericInfo));
会根据配置对propertyName进行translate。转换成对应格式的属性名称
常见误区:
与序列化误区相同,如果是map,JSONObject不会有这个转换,并且转换结果需要参照translate方方法逻辑来看
值的注意的是,JSONObject的toJavaObject方法,智能匹配会生效。可以放心得进行下划线和驼峰得互相转换
- String str = "{'user_name':123}";
- JSONObject object = (JSONObject) JSON.parse(str);
- System.out.println(object);
- User user = object.toJavaObject(User.class);
- System.out.println(user);
到此这篇关于FastJson实现驼峰下划线相互转换方法详解的文章就介绍到这了,更多相关FastJson驼峰下划线相互转换内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!