- import cv2
- import numpy as np
- from PIL import Image
- import requests
- from io import BytesIO
- import matplotlib
- matplotlib.use('TkAgg')
- import matplotlib.pyplot as plt
-
-
- def aHash(img):
- # 均值哈希算法
- # 缩放为8*8
- img = cv2.resize(img, (8, 8))
- # 转换为灰度图
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- # s为像素和初值为0,hash_str为hash值初值为''
- s = 0
- hash_str = ''
- # 遍历累加求像素和
- for i in range(8):
- for j in range(8):
- s = s+gray[i, j]
- # 求平均灰度
- avg = s/64
- # 灰度大于平均值为1相反为0生成图片的hash值
- for i in range(8):
- for j in range(8):
- if gray[i, j] > avg:
- hash_str = hash_str+'1'
- else:
- hash_str = hash_str+'0'
- return hash_str
-
-
- def dHash(img):
- # 差值哈希算法
- # 缩放8*8
- img = cv2.resize(img, (9, 8))
- # 转换灰度图
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- hash_str = ''
- # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
- for i in range(8):
- for j in range(8):
- if gray[i, j] > gray[i, j+1]:
- hash_str = hash_str+'1'
- else:
- hash_str = hash_str+'0'
- return hash_str
-
-
- def pHash(img):
- # 感知哈希算法
- # 缩放32*32
- img = cv2.resize(img, (32, 32)) # , interpolation=cv2.INTER_CUBIC
-
- # 转换为灰度图
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- # 将灰度图转为浮点型,再进行dct变换
- dct = cv2.dct(np.float32(gray))
- # opencv实现的掩码操作
- dct_roi = dct[0:8, 0:8]
-
- hash = []
- avreage = np.mean(dct_roi)
- for i in range(dct_roi.shape[0]):
- for j in range(dct_roi.shape[1]):
- if dct_roi[i, j] > avreage:
- hash.append(1)
- else:
- hash.append(0)
- return hash
-
-
- def calculate(image1, image2):
- # 灰度直方图算法
- # 计算单通道的直方图的相似值
- hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
- hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
- # 计算直方图的重合度
- degree = 0
- for i in range(len(hist1)):
- if hist1[i] != hist2[i]:
- degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
- else:
- degree = degree + 1
- degree = degree / len(hist1)
- return degree
-
-
- def classify_hist_with_split(image1, image2, size=(256, 256)):
- # RGB每个通道的直方图相似度
- # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
- image1 = cv2.resize(image1, size)
- image2 = cv2.resize(image2, size)
- sub_image1 = cv2.split(image1)
- sub_image2 = cv2.split(image2)
- sub_data = 0
- for im1, im2 in zip(sub_image1, sub_image2):
- sub_data += calculate(im1, im2)
- sub_data = sub_data / 3
- return sub_data
-
-
- def cmpHash(hash1, hash2):
- # Hash值对比
- # 算法中1和0顺序组合起来的即是图片的指纹hash。顺序不固定,但是比较的时候必须是相同的顺序。
- # 对比两幅图的指纹,计算汉明距离,即两个64位的hash值有多少是不一样的,不同的位数越小,图片越相似
- # 汉明距离:一组二进制数据变成另一组数据所需要的步骤,可以衡量两图的差异,汉明距离越小,则相似度越高。汉明距离为0,即两张图片完全一样
- n = 0
- # hash长度不同则返回-1代表传参出错
- if len(hash1) != len(hash2):
- return -1
- # 遍历判断
- for i in range(len(hash1)):
- # 不相等则n计数+1,n最终为相似度
- if hash1[i] != hash2[i]:
- n = n + 1
- return n
-
-
- def getImageByUrl(url):
- # 根据图片url 获取图片对象
- html = requests.get(url, verify=False)
- image = Image.open(BytesIO(html.content))
- return image
-
-
- def PILImageToCV():
- # PIL Image转换成OpenCV格式
- path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
- img = Image.open(path)
- plt.subplot(121)
- plt.imshow(img)
- print(isinstance(img, np.ndarray))
- img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
- print(isinstance(img, np.ndarray))
- plt.subplot(122)
- plt.imshow(img)
- plt.show()
-
-
- def CVImageToPIL():
- # OpenCV图片转换为PIL image
- path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"
- img = cv2.imread(path)
- # cv2.imshow("OpenCV",img)
- plt.subplot(121)
- plt.imshow(img)
-
- img2 = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- plt.subplot(122)
- plt.imshow(img2)
- plt.show()
-
- def bytes_to_cvimage(filebytes):
- # 图片字节流转换为cv image
- image = Image.open(filebytes)
- img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
- return img
-
- def runAllImageSimilaryFun(para1, para2):
- # 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0
- # 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1
-
- # t1,t2 14;19;10; 0.70;0.75
- # t1,t3 39 33 18 0.58 0.49
- # s1,s2 7 23 11 0.83 0.86 挺相似的图片
- # c1,c2 11 29 17 0.30 0.31
-
- if para1.startswith("http"):
- # 根据链接下载图片,并转换为opencv格式
- img1 = getImageByUrl(para1)
- img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)
-
- img2 = getImageByUrl(para2)
- img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)
- else:
- # 通过imread方法直接读取物理路径
- img1 = cv2.imread(para1)
- img2 = cv2.imread(para2)
-
- hash1 = aHash(img1)
- hash2 = aHash(img2)
- n1 = cmpHash(hash1, hash2)
- print('均值哈希算法相似度aHash:', n1)
-
- hash1 = dHash(img1)
- hash2 = dHash(img2)
- n2 = cmpHash(hash1, hash2)
- print('差值哈希算法相似度dHash:', n2)
-
- hash1 = pHash(img1)
- hash2 = pHash(img2)
- n3 = cmpHash(hash1, hash2)
- print('感知哈希算法相似度pHash:', n3)
-
- n4 = classify_hist_with_split(img1, img2)
- print('三直方图算法相似度:', n4)
-
- n5 = calculate(img1, img2)
- print("单通道的直方图", n5)
- print("%d %d %d %.2f %.2f " % (n1, n2, n3, round(n4[0], 2), n5[0]))
- print("%.2f %.2f %.2f %.2f %.2f " % (1-float(n1/64), 1 -
- float(n2/64), 1-float(n3/64), round(n4[0], 2), n5[0]))
-
- plt.subplot(121)
- plt.imshow(Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)))
- plt.subplot(122)
- plt.imshow(Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)))
- plt.show()
-
- if __name__ == "__main__":
- p1="https://ww3.sinaimg.cn/bmiddle/007INInDly1g336j2zziwj30su0g848w.jpg"
- p2="https://ww2.sinaimg.cn/bmiddle/007INInDly1g336j10d32j30vd0hnam6.jpg"
- runAllImageSimilaryFun(p1,p2)
到此这篇关于python OpenCV计算图片相似度的5种算法的文章就介绍到这了,更多相关OpenCV计算图片相似度内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!