Impala GROUP BY子句与SELECT语句协作使用,以将相同的数据排列到组中。
语法
以下是GROUP BY子句的语法。
- select data from table_name Group BY col_name;
例
假设我们在数据库my_db中有一个名为customers的表,其内容如下 -
- [quickstart.cloudera:21000] > select * from customers;
- Query: select * from customers
- +----+----------+-----+-----------+--------+
- | id | name | age | address | salary |
- +----+----------+-----+-----------+--------+
- | 1 | Ramesh | 32 | Ahmedabad | 20000 |
- | 2 | Khilan | 25 | Delhi | 15000 |
- | 3 | kaushik | 23 | Kota | 30000 |
- | 4 | Chaitali | 25 | Mumbai | 35000 |
- | 5 | Hardik | 27 | Bhopal | 40000 |
- | 6 | Komal | 22 | MP | 32000 |
- +----+----------+-----+-----------+--------+
- Fetched 6 row(s) in 0.51s
您可以使用GROUP BY查询获得每个客户的工资总额,如下所示。
- [quickstart.cloudera:21000] > Select name, sum(salary) from customers Group BY name;
执行时,上述查询给出以下输出。
- Query: select name, sum(salary) from customers Group BY name
- +----------+-------------+
- | name | sum(salary) |
- +----------+-------------+
- | Ramesh | 20000 |
- | Komal | 32000 |
- | Hardik | 40000 |
- | Khilan | 15000 |
- | Chaitali | 35000 |
- | kaushik | 30000 |
- +----------+-------------+
- Fetched 6 row(s) in 1.75s
假设此表有多个记录,如下所示。
- +----+----------+-----+-----------+--------+
- | id | name | age | address | salary |
- +----+----------+-----+-----------+--------+
- | 1 | Ramesh | 32 | Ahmedabad | 20000 |
- | 2 | Ramesh | 32 | Ahmedabad | 1000| |
- | 3 | Khilan | 25 | Delhi | 15000 |
- | 4 | kaushik | 23 | Kota | 30000 |
- | 5 | Chaitali | 25 | Mumbai | 35000 |
- | 6 | Chaitali | 25 | Mumbai | 2000 |
- | 7 | Hardik | 27 | Bhopal | 40000 |
- | 8 | Komal | 22 | MP | 32000 |
- +----+----------+-----+-----------+--------+
现在,您可以使用Group By子句,如下所示,考虑重复的记录条目,获取员工的总工资。
- Select name, sum(salary) from customers Group BY name;
执行时,上述查询给出以下输出。
- Query: select name, sum(salary) from customers Group BY name
- +----------+-------------+
- | name | sum(salary) |
- +----------+-------------+
- | Ramesh | 21000 |
- | Komal | 32000 |
- | Hardik | 40000 |
- | Khilan | 15000 |
- | Chaitali | 37000 |
- | kaushik | 30000 |
- +----------+-------------+
- Fetched 6 row(s) in 1.75s
转载本站内容时,请务必注明来自W3xue,违者必究。