经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 大数据/云/AI » 人工智能基础 » 查看文章
算法金 | 再见,PCA 主成分分析!
来源:cnblogs  作者:算法金「全网同名」  时间:2024/6/5 9:23:39  对本文有异议


?大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣]

1. 概念:数据降维的数学方法

定义

  • 主成分分析(PCA)是一种统计方法,通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这组新的变量称为主成分。
  • 大白话,PCA能够从数据中提取出最重要的特征,通过减少变量的数量来简化模型,同时保留原始数据集中的大部分信息。

特点

  • PCA是最广泛使用的数据降维技术之一,能够有效地揭示数据的内部结构,减少分析问题的复杂度。

应用领域

  • 图像处理:图像压缩和特征提取。
  • 金融数据分析:风险管理、股票市场分析。
  • 生物信息学:基因数据分析、疾病预测。
  • 社会科学研究:问卷数据分析、人口研究。

2 核心原理:方差最大化

  • 方差最大化:
  • PCA通过找到数据方差最大的方向来确定主成分,然后找到次大方向,且这些方向必须是相互正交的。
  • 这样做的目的是保证降维后的数据能够保留最多的原始数据信息。

  • 计算步骤:
  1. 数据标准化:使得每个特征的平均值为0,方差为1。
  2. 计算协方差矩阵:反映变量之间的相关性。
  3. 计算协方差矩阵的特征值和特征向量:特征向量决定了PCA的方向,特征值决定了方向的重要性。
  4. 选择主成分:根据特征值的大小,选择最重要的几个特征向量,构成新的特征空间。

3 优缺点分析

  • 优点:
  • 降维效果显著:能够有效地减少数据的维度,同时尽可能地保留原始数据的信息。
  • 揭示数据结构:有助于发现数据中的模式和结构,便于进一步分析。
  • 无需标签数据:PCA是一种无监督学习算法,不需要数据标签。
  • 缺点:
  • 线性限制:PCA只能捕捉到数据的线性关系和结构,对于非线性结构无能为力。
  • 方差并非信息量的唯一衡量:有时候数据的重要性并不仅仅体现在方差上,PCA可能会忽略掉一些重要信息。
  • 对异常值敏感:异常值可能会对PCA的结果产生较大影响。

4 PCA 实战

介绍一个用于主成分分析的 Python 库

PCA的核心是构建在sklearn功能之上,以便在与其他包结合时实现最大的兼容性。

除了常规的PCA外,它还可以执行SparsePCA和TruncatedSVD。

其他功能包括:

  • 使用Biplot绘制载荷图
  • 确定解释的方差
  • 提取性能最佳的特征
  • 使用载荷绘制的散点图
  • 使用Hotelling T2和/或SPE/Dmodx进行异常值检测
  1. pip install pca
  1. from pca import pca # 导入PCA模块
  2. import numpy as np
  3. import pandas as pd
  4. # Dataset
  5. from sklearn.datasets import load_iris # 导入鸢尾花数据集
  6. # 从鸢尾花数据集中创建DataFrame对象
  7. X = pd.DataFrame(data=load_iris().data, columns=load_iris().feature_names, index=load_iris().target)
  8. # 初始化PCA模型,指定主成分数量为3,并进行数据标准化
  9. model = pca(n_components=3, normalize=True)
  10. # 拟合并转换数据
  11. out = model.fit_transform(X)
  12. # 创建只包含方向的图
  13. fig, ax = model.biplot(textlabel=True, legend=False, figsize=(10, 6))

下面我们使用 sklearn 里面的 PCA 工具,在一组人脸数据上直观感受下,

  1. # 导入必要的库
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. from sklearn.datasets import fetch_olivetti_faces
  5. from sklearn.decomposition import PCA
  6. # 加载Olivetti人脸数据集
  7. faces_data = fetch_olivetti_faces()
  8. X = faces_data.data
  9. # 可视化原始图像和对应的主成分
  10. n_images = 4 # 每行显示的图像数量
  11. n_rows = 4 # 总共的行数
  12. fig, axes = plt.subplots(n_rows, 2*n_images, figsize=(16, 10), subplot_kw={'xticks':[], 'yticks':[]})
  13. # 使用PCA降维
  14. n_components = 50 # 设置PCA保留的主成分数量
  15. pca = PCA(n_components=n_components, whiten=True, random_state=42)
  16. X_pca = pca.fit_transform(X)
  17. for r in range(n_rows):
  18. for i in range(n_images):
  19. index = r * n_images + i
  20. axes[r, 2*i].imshow(X[index].reshape(64, 64), cmap='gray')
  21. axes[r, 2*i].set_title(f'大侠 {index+1} 图像', fontproperties='SimHei') # 手动设置字体
  22. axes[r, 2*i+1].imshow(pca.inverse_transform(X_pca[index]).reshape(64, 64), cmap='bone')
  23. axes[r, 2*i+1].set_title(f'大侠 {index+1} 主成分', fontproperties='SimHei') # 手动设置字体
  24. plt.tight_layout()
  25. plt.show()

我们保留了前 50 个主成分

通过可视化对比图直观感受下,信息保留了多多少,损失了多少

通过对比图可以看到,某一张人脸的基本信息都保留了下来

如果保留 前 100 个主成分,那就更接近原始图片了

你也可以试下,保留 1 个主成分会怎样?通过保留的信息你还认得出来哪过大侠是哪过吗

[ 算法金,碎碎念 ]

  • 最近 【不上班】 这个词频繁出现在朋友圈,貌似很火
  • 不上班,站着把钱赚了,大概率不可能的
  • 不上班,躺着把钱赚了(别想歪了),更是绝大概率不可能的
  • 有些圈子,天然就是靠博眼球来筛选用户,真的很可怕
  • 想到了一句话【当大家都有病时,你就不觉得这是病了】
  • 在这种圈子呆久了,大概率会沦陷的,别以外自己不会,咱都是普通人
  • 大部分人都是普通人,普通人通常都不信概率,而概率恰恰是反映常态 分布的
  • 悲剧,卒~

全网同名,日更万日,让更多人享受智能乐趣

烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;我们一起,让更多人享受智能乐趣

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

原文链接:https://www.cnblogs.com/suanfajin/p/18230769

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号