1.ES7.3.2 + kibana + ik-smart 百度网盘下载地址:https://pan.baidu.com/s/1eCKTYoosXl8NfX37EwjyWA
- GET _search
- {
- "query": {
- "match_all": {}
- }
- }
-
- ### 查看集群健康信息
- GET /_cat/health?v
-
- ### 帮助
- GET /_cat/health?help
-
- ### 查看集群中节点信息
- GET /_cat/nodes?v
-
- ### 查看集群中索引信息
- GET /_cat/indices?v
-
- ### 精简信息
- GET /_cat/indices?v&h=health,status,index
-
- ### 创建索引
- PUT /baizhi
-
- ### 删除索引
- DELETE /baizhi
-
- ### 创建类型mapping
- POST /baizhi/user
- {
- "user": {
- "properties": {
- "id": { "type": "text" },
- "name": { "type": "text" },
- "age": { "type": "integer" },
- "created": {
- "type": "date",
- "format": "strict_date_optional_time || epoch_millis"
- }
- }
- }
- }
-
- ### 查看类型mapping
- GET /baizhi/_mapping
-
- ### 新增单个文档
- PUT /baizhi/user/1
- {
- "name":"zs",
- "title":"张三",
- "age":18,
- "created":"2018-12-25"
- }
-
- ### 查询所有文档
- GET /zpark/user/_search
-
- ### 指定id查询单个文档
- GET /baizhi/user/1
-
- ### 修改单个文档
- PUT /baizhi/user/1
- {
- "name": "lxs",
- "title": "李小四"
- }
-
- ### 删除单个文档
- DELETE /baizhi/user/1
-
- ### 批量新增
- POST /baizhi/user/_bulk
- {"index":{}}
- {"name":"ww","title":"王五","age":18,"created":"2018-12-27"}
- {"index":{}}
- {"name":"zl","title":"赵六","age":25,"created":"2018-12-27"}
-
- ### 批量删除
- POST /baizhi/user/_bulk
- {"update":{"_id":"K38E728BJ1QbWBSobMEC"}}
- {"doc":{"title":"王小五"}}
- {"delete":{"_id":"LH8E728BJ1QbWBSobMEC"}}
-
- ##############进阶##############
-
- ########### 查询(Query)
-
- # 批量插入测试数据
- POST /zpark/user/_bulk
- {"index":{"_id":1}}
- {"name":"zs","realname":"张三","age":18,"birthday":"2018-12-27","salary":1000.0,"address":"北京市昌平区沙阳路55号"}
- {"index":{"_id":2}}
- {"name":"ls","realname":"李四","age":20,"birthday":"2017-10-20","salary":5000.0,"address":"北京市朝阳区三里屯街道21号"}
- {"index":{"_id":3}}
- {"name":"ww","realname":"王五","age":25,"birthday":"2016-03-15","salary":4300.0,"address":"北京市海淀区中关村大街新中关商城2楼511室"}
- {"index":{"_id":4}}
- {"name":"zl","realname":"赵六","age":20,"birthday":"2003-04-19","salary":12300.0,"address":"北京市海淀区中关村软件园9号楼211室"}
- {"index":{"_id":5}}
- {"name":"tq","realname":"田七","age":35,"birthday":"2001-08-11","salary":1403.0,"address":"北京市海淀区西二旗地铁辉煌国际大厦负一楼"}
-
-
- ### 查看所有并按照年龄降序排列
- GET /zpark/user/_search
- {
- "query": {
- "match_all": {}
- },
- "sort": {
- "age": "desc"
- }
- }
-
-
- ### 查询第2页的用户(每页显示2条)
- GET /zpark/user/_search
- {
- "query": {
- "match_all": {}
- },
- "sort": {
- "age": "desc"
- },
- "from": 2,
- "size": 2
- }
-
- ### 查询address在海淀区的所有用户,并高亮
- GET /zpark/user/_search
- {
- "query": {
- "match": {
- "address": {
- "analyzer": "ik_max_word",
- "query": "海淀区"
- }
- }
- },
- "highlight": {
- "fields": {
- "address": {}
- }
- }
- }
-
- ### 设置索引分词器
- PUT /zpark
- {
- "settings" : {
- "index" : {
- "analysis.analyzer.default.type": "ik_smart"
- }
- }
- }
-
- ### 查询name是zs关键字的用户
- GET /zpark/user/_search
- {
- "query":{
- "term": {
- "name": {
- "value": "zs"
- }
- }
- }
- }
-
- ### 查询年龄在20~30岁之间的用户
- GET /zpark/user/_search
- {
- "query": {
- "range": {
- "age": {
- "gte": 20,
- "lte": 30
- }
- }
- }
- }
-
- ### 查询真实姓名以李开头的用户
- GET /zpark/user/_search
- {
- "query": {
- "prefix": {
- "realname": {
- "value": "李"
- }
- }
- }
- }
-
- ### 查询名字以s结尾的用户
- GET /zpark/user/_search
- {
- "query": {
- "wildcard": {
- "name": {
- "value": "*s"
- }
- }
- }
- }
-
- ### 查询id为1,2,3的用户
- GET /zpark/user/_search
- {
- "query": {
- "ids": {
- "values": [1,2,3]
- }
- }
- }
-
- ### 模糊查询realname中包含张关键字的用户
- GET /zpark/user/_search
- {
- "query": {
- "wildcard": {
- "realname": {"value": "*张*"}
- }
- }
- }
-
-
- ### 查询age在15-30岁之间并且name必须通配z*
- GET /zpark/user/_search
- {
- "query": {
- "bool": {
- "must": [
- {
- "range": {
- "age": {
- "gte": 15,
- "lte": 30
- }
- }
- },
- {
- "wildcard": {
- "name": {
- "value": "z*"
- }
- }
- }
- ],
- "must_not": [
- {
- "regexp": {
- "name": ".*s"
- }
- }
- ]
- }
- }
- }
-
- ############# 过滤器(Filter)
- ### 其实准确来说,ES中的查询操作分为2种:查询(query)和过滤(filter)。查询即是之前提到的query查询,它(查询)默认会计算每个返回文档的得分,然后根据得分排序。而过滤(filter)只会筛选出符合的文档,并不计算得分,且它可以缓存文档。所以,单从性能考虑,过滤比查询更快。
-
- ### 换句话说,过滤适合在大范围筛选数据,而查询则适合精确匹配数据。一般应用时,应先使用过滤操作过滤数据,然后使用查询匹配数据。
-
- ### 过滤器使用 ranage filter
- GET /zpark/user/_search
- {
- "query":{
- "bool": {
- "must": [
- {"match_all": {}}
- ],
- "filter": {
- "range": {
- "age": {
- "gte": 25
- }
- }
- }
- }
- }
- }
-
- ### term、terms Filter term、terms的含义与查询时一致。term用于精确匹配、terms用于多词条匹配
- GET /zpark/user/_search
- {
- "query":{
- "bool": {
- "must": [
- {"match_all": {}}
- ],
- "filter": {
- "terms": {
- "name": [
- "zs",
- "ls"
- ]
- }
- }
- }
- }
- }
-
- ### exists filter exists过滤指定字段没有值的文档
- GET /zpark/user/_search
- {
- "query": {
- "bool": {
- "must": [
- {
- "match_all": {}
- }
- ],
- "filter": {
- "exists": {
- "field": "salary"
- }
- }
- }
- },
- "sort": [
- {
- "_id": {
- "order": "asc"
- }
- }
- ]
- }
-
-
- ### ids filter 需要过滤出若干指定_id的文档,可使用标识符过滤器(ids)
- GET /zpark/user/_search
- {
- "query": {
- "bool": {
- "must": [
- {
- "match": {
- "address": "昌平区"
- }
- }
- ],
- "filter": {
- "ids": {
- "values": [
- 1,
- 2,
- 3
- ]
- }
- }
- }
- },"highlight": {
- "fields": {
- "address": {}
- }
- }
- }
-
- #############聚合(Aggregations)
- ### 度量(metric)聚合
- POST /zpark/user/_search
- {
- "aggs": {
- "age_avg": {
- "avg": {"field": "age"}
- }
- }
- }
-
- ### 先过滤,再进行统计,如:
- POST /zpark/user/_search
- { "query": {
- "ids": {
- "values":[1,2,3]
- }
- },
- "aggs": {
- "age_avg": {
- "avg": {"field": "age"}
- }
- }
- }
-
- ### 最大值查询。如:查询员工的最高工资
- POST /zpark/user/_search
- {
- "aggs": {
- "max_salary": {
- "max": {
- "field": "salary"
- }
- }
- }
- }
-
- ### 统计查询,一次性统计出某个字段上的常用统计值
- POST /zpark/user/_search
- {
- "aggs": {
- "max_salary": {
- "stats": {
- "field": "salary"
- }
- }
- }
- }
-
- ### 桶(bucketing)聚合 自定义区间范围的聚合,我们可以自己手动地划分区间,ES会根据划分出来的区间将数据分配不同的区间上去。
- ### 统计0-20岁,20-35岁,35~60岁用户人数
- POST /zpark/user/_search
- {
- "aggs": {
- "age_ranges": {
- "range": {
- "field": "age",
- "ranges": [
- {
- "from": 0,
- "to": 20
- },
- {
- "from": 20,
- "to": 35
- },
- {
- "from": 35,
- "to": 60
- }
- ]
- }
- }
- }
- }
-
- ### 根据年龄分组,统计相同年龄的用户
- POST /zpark/user/_search
- {
- "aggs": {
- "age_counts":{
- "terms": {
- "field": "age",
- "size": 2
- }
- }
- }
- }
-
- ### 时间区间聚合专门针对date类型的字段,它与Range Aggregation的主要区别是其可以使用时间运算表达式。
-
- ### now+10y:表示从现在开始的第10年。
- ### now+10M:表示从现在开始的第10个月。
- ### 1990-01-10||+20y:表示从1990-01-01开始后的第20年,即2010-01-01。
- ### now/y:表示在年位上做舍入运算。
- ### 统计生日在2018年、2017年、2016年的用户
- POST /zpark/user/_search
- {
- "aggs": {
- "date_counts": {
- "date_range": {
- "field": "birthday",
- "format": "yyyy-MM-dd",
- "ranges": [
- {
- "from": "now/y",
- "to": "now"
- },
- {
- "from": "now/y-1y",
- "to":"now/y"
- },
- {
- "from": "now/y-2y",
- "to":"now/y-1y"
- }
- ]
- }
- }
- }
- }
-
- ### 嵌套使用
- ### 聚合操作是可以嵌套使用的。通过嵌套,可以使得metric类型的聚合操作作用在每一bucket上。我们可以使用ES的嵌套聚合操作来完成稍微复杂一点的统计功能。
-
- ### 如:统计每年中用户的最高工资
- POST /zpark/user/_search
- {
- "aggs": {
- "date_histogram": {
- "date_histogram": {
- "field": "birthday",
- "interval": "year",
- "format": "yyyy-MM-dd"
- },
- "aggs": {
- "salary_max": {
- "max": {
- "field": "salary"
- }
- }
- }
- }
- }
- }
到此这篇关于windows 环境下搭建electricSearch+kibana的文章就介绍到这了,更多相关windows 环境搭建electricSearch+kibana内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!