SparkStreaming 连接Flume的两种方式分别为:Push(推)和Pull(拉)的方式实现,以Spark Streaming的角度来看,Push方式属于推送(由Flume向Spark推送数据);而Pull属于拉取(Spark 拉取 Flume的输出数据);
Flume向SparkStreaming推送数据没有研究明白,有大佬指点一下吗?
万分感谢!
1.Spark拉取Flume数据:
导入两个jar包到flume/lib下

否则抛出这两个异常:
org.apache.flume.FlumeException: Unable to load sink type: org.apache.spark.streaming.flume.sink.SparkSink, class: org.apache.spark.streaming.flume.sink.SparkSink
java.lang.IllegalStateException: begin() called when transaction is OPEN!
2.编写flume 工作文件:
- a1.sources = r1
- a1.sinks = k1
- a1.channels = c1
- # source
- a1.sources.r1.type=spooldir
- a1.sources.r1.spoolDir=/home/zhuzhu/apps/flumeSpooding
- a1.sources.r1.fileHeader=true
-
- # Describe the sink
- a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
- # 当前主机端口
- a1.sinks.k1.hostname = 192.168.137.88
- a1.sinks.k1.port = 9999
-
- # Use a channel which buffers events in memory
- a1.channels.c1.type = memory
- a1.channels.c1.capacity = 1000
- a1.channels.c1.transactionCapacity = 100
-
- # Bind the source and sink to the channel
- a1.sources.r1.channels = c1
- a1.sinks.k1.channel = c1
3.编写SparkStreaming程序:
- package day02
-
- import java.net.InetSocketAddress
-
- import org.apache.spark.storage.StorageLevel
- import org.apache.spark.streaming.{Seconds, StreamingContext}
- import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
- import org.apache.spark.streaming.flume.{FlumeUtils, SparkFlumeEvent}
- import org.apache.spark.{SparkConf, SparkContext}
-
- /**
- * @ClassName: StreamingFlume
- * @Description TODO 实时监控flume,统计flume数据产生,是Spark
- * @Author: Charon
- * @Date: 2021/4/7 13:19
- * @Version 1.0
- **/
- object StreamingFlume {
-
- def main(args: Array[String]): Unit = {
- //1.创建SparkConf对象
- val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("StreamingFlume")
- //2.创建SparkContext对象
- val sc = new SparkContext(conf)
- //设置日志输出格式,只打印异常日志,在这里设置没有用
- //sc.setLogLevel("WARN")
- //3.创建StreamingContext,Seconds(5):轮询机制,多久执行一次
- val ssc = new StreamingContext(sc, Seconds(5))
- //4.定义一个flume集合,可以接受多个flume数据,多个用,隔开需要new
- val addresses = Seq(new InetSocketAddress("127.0.0.1", 5555))
- //5.获取flume中的数据,
- val stream: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(ssc, addresses, StorageLevel.MEMORY_AND_DISK_2)
- // 6.截取flume数据:{"header":xxxxx "body":xxxxxx}
- val lineDstream: DStream[String] = stream.map(x => new String(x.event.getBody.array()))
- lineDstream.flatMap(x=>x.split(" ")).map(x=>(x,1)).reduceByKey(_+_).print()
- ssc.start()
- ssc.awaitTermination()
- }
- }
4。开启flume监控文件,开启SparkStreaming程序:
向指定目录上传文件

