一.实现案例
实现WorldCount的流程如下:
备注:其中输入的数据是一个txt文件,里面有各种单词,每一行中用空格进行空行

一.Mapper的编写
我们在IDEA是使用“ctrl+alt+鼠标左键点击”的方式来查看源码,我们首先查看mapper 类的源码,同时源码我已经使用了,如下所示:
- //
- // Source code recreated from a .class file by IntelliJ IDEA
- // (powered by FernFlower decompiler)
- //
-
- package org.apache.hadoop.mapreduce;
- import java.io.IOException;
- import org.apache.hadoop.classification.InterfaceAudience.Public;
- import org.apache.hadoop.classification.InterfaceStability.Stable;
- @Public
- @Stable
- public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
- public Mapper() {
- }
//在任务开始之前,setup必然被调用一次- protected void setup(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- }
//在input split的时候,对每一个key/value的pair都call once.大多数程序都会overide这个方法- protected void map(KEYIN key, VALUEIN value, Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- context.write(key, value);
- }
- //在at the end of the task,这个方法被调用一次
- protected void cleanup(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- }
- //把整个程序,里面的所有方法串连起来
- public void run(Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- this.setup(context);
- try {
- while(context.nextKeyValue()) {//每次仅读取一行数据
- this.map(context.getCurrentKey(), context.getCurrentValue(), context);
- }
- } finally {
- this.cleanup(context);
- }
- }
//上下文,封装了程序当中大量的分析方法- public abstract class Context implements MapContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
- public Context() {
- }
- }
- }
因此我们根据里面的源码,编写wordcount所需要的mapper的代码,如下所示:
- //现在我们开始编写wordcount的示例
- public class WordcountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
- //mapper后面的参数:
- // 1.输入数据的key类型
- // 2.输入数据的value类型
- // 3.输出数据的key类型
- // 4.输出数据的value的类型
-
- protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
- //1.首先获取一行
- String line=value.toString();
- //2.将获取后的单词进行分割,按照空格进行分割
- String[] words=line.split(" ");
- //3.循环输出(不是输出到控制台上面,是输出到reducer里进行处理)
- for(String word:words)
- {
- Text k=new Text();//定义我们输出的类型,肯定是Text,和整个类extends的顺序对应
- k.set(word);
- IntWritable v=new IntWritable();
- v.set(1);//将value设置为1
- context.write(k,v);
- }
- }
- }
二.Reducer的编写
reducer的源码如下,和mapper的源码非常相似,其实也就是对reducer的方法进行了封装,并没有方法体:
- import java.io.IOException;
- import java.util.Iterator;
- import org.apache.hadoop.classification.InterfaceAudience.Public;
- import org.apache.hadoop.classification.InterfaceStability.Stable;
- import org.apache.hadoop.mapreduce.ReduceContext.ValueIterator;
- import org.apache.hadoop.mapreduce.task.annotation.Checkpointable;
- @Checkpointable
- @Public
- @Stable
- public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
- public Reducer() {
- }
- protected void setup(Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- }
- protected void reduce(KEYIN key, Iterable<VALUEIN> values, Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- Iterator i$ = values.iterator();
- while(i$.hasNext()) {
- VALUEIN value = i$.next();
- context.write(key, value);
- }
- }
- protected void cleanup(Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- }
- public void run(Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>.Context context) throws IOException, InterruptedException {
- this.setup(context);
- try {
- while(context.nextKey()) {
- this.reduce(context.getCurrentKey(), context.getValues(), context);
- Iterator<VALUEIN> iter = context.getValues().iterator();
- if (iter instanceof ValueIterator) {
- ((ValueIterator)iter).resetBackupStore();
- }
- }
- } finally {
- this.cleanup(context);
- }
- }
- public abstract class Context implements ReduceContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
- public Context() {
- }
- }
- }
代码如下:
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.mapreduce.Reducer;
- import javax.xml.soap.Text;
- import java.io.IOException;
- public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
- @Override
- protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
- super.reduce(key, values, context);
- //在reduce里拿到的是mapper已经map好的数据
- //现在数据的形式是这样的:
- //atguigu(key),1(value)
- //atguigu(key),1(value)
-
- int sum=0;
- //累计求和
- for(IntWritable value: values)
- {
- sum+=value.get();//将intwrite对象转化为int对象
- }
- IntWritable v=new IntWritable();
- v.set(sum);
- //2.写出 atguigu 2
- context.write(key,v);
- //总结,这个程序看起来并没有起到分开不同单词,并对同一单词的value进行相加的作用啊
- //唯一的功能则是统计仅有一个单词的字符之和,这有啥用......
- }
- }
三.Driver程序编写,让mapreduce动起来!
代码如下:
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- public class wordcoundDriver {
- //将mapper和reducer进行启动的类
- //driver是完全格式固定的
- public static void main(String[] args) throws Exception {
- Configuration conf=new Configuration();
- //1.获取Job对象
- Job job=Job.getInstance(conf);
- //2.设置jar储存位置
- job.setJarByClass(wordcoundDriver.class);
- //3.关联map和reduce类
- job.setMapperClass(WordcountMapper.class);
- job.setReducerClass(WordCountReducer.class);
- //4.设置mapper阶段输出数据的key和value类型
- job.setMapOutputKeyClass(Text.class);
- job.setMapOutputValueClass(IntWritable.class);
- //5.设置最终数据输出的key和value类型
- job.setOutputKeyClass(Text.class);
- job.setOutputValueClass(IntWritable.class);
- //6.设置输入路径和输出路径
- FileInputFormat.setInputPaths(job,new Path(args[0]));
- FileInputFormat.setInputPaths(job,new Path(args[1]));
- //7.提交Job
- job.submit();
- job.waitForCompletion(true);
- }
- }
这样就可以运行起来了!大家可以尝试在分布式集群上实现wordcount统计这个功能,只需要将这些代码进行打成jar包,这样就可以放到linux操作系统上去运行了!最后运行的时候,路径写的是HDFS上的路径哦!