Feature maps




Why not Linear
- 4 Layers: [784, 256, 256, 256, 10]

335k or 1.3MB

em...
- 486 PC + AT&T DSP32C
Batch X
Gradient Cache
etc.

Receptive Field

Fully connnected

Partial connected

Locally connected

Rethink Linear layer

Fully VS Lovally

Weight sharing



Why call Convolution?

2D Convolution
\[
y(t) = x(t)*h(t) = \int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau
\]

Convolution in Computer Vision



CNN on feature maps

原文链接:http://www.cnblogs.com/nickchen121/p/10923353.html